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Section (1)
Introduction

When a solid body moves nonuniformly through a compressible gas, compression

and expansion waves are emitted from its surface, producing a reaction on the body. It is

of interest to be able to predict the pressure forces exerted on the body in response to its
motion. In general this problem is highly nonlinear, because the governing equations of

a compressible gas are nonlinear. If the interest is in small amplitude perturbations of a
rigid body in uniform motion, then the governing equations may rigorously be linearized

about the steady flow produced by the rigid body. The deformation induced perturbations
are then governed by a linear system with time invariant coefficients (in the mean body
frame,) even though the mean flow field itself is still nonlinear. Most problems of
aeroelastic interest fall in this category. The principal significance of this is that concepts

of generalized force derivatives and aerodynamic transfer functions relating generalized

deformation coordinates to their generalized forces are valid.
The problem is this: there are no good methods for solving the linearized equations

of motion of the gas significantly more efficiently than the nonlinear equations.
Therefore, there is little advantage (in most problems) to be gained by linearizing.

The reason for this is that the linearized equations have spatially variable

coefficients. The principle of superposition applies, but there are no known solutions to
superimpose. If, however, the mean flow itself is uniform, the governing equations have
constant coefficients and elementary solutions are known. This is the realm of classical
linearized aerodynamics, or equivalently classical acoustics, for which quite complicated
solutions can be constructed simply by adding together many simple solutions.

The problem of constructing time dependent flow fields governed by classical

acoustics will be reexamined here. It should be kept in mind, though, that the underlying
assumption... namely that the mean flow is uniform.., is fundamentally flawed unless the
mean body is a (generalized) cylinder moving parallel to its generators, or a helical sheet
moving tangent to itself, these being the only rigid bodies that can slice through a gas
without disturbing it. Real flight vehicles do not look like this, and do produce significant

distortions of the surrounding gas. For slender shapes, typical wings, tails and fuselages,
these mean flow disturbances ought to be reasonably small except near stagnation points,

and the assumption that the mean flow is uniform ought to be reasonably good away from
stagnation points, at least in terms of predicting response to unsteady deformations.

Even if the results of a calculation based on linear theory are acceptably accurate,

though, the approximation is justifiable only if those results can be obtained considerably
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more quickly than they could be from a full nonlinear analysis. A fast approximate

solution can be useful for design or extended parametric studies which would be"

otherwise prohibitive. An approximate solution that is not faster than a more accurate
method is useless. It is not clear at the moment whether the time dependent approach to

these problems is in the "fast useful" or "slow useless" category, but that question must

eventually be answered. For the case of rectilinear motion, the equations admit simple

harmonic solutions, so that the problem can be solved for a single frequency of
oscillation. Methods based on this have been around for many years and are a standard

("fast useful") tool in aeroelasticityl. A time domain method, in principle, can provide a

complete spectrum of generalized forces from one transient calculation, or be coupled

directly to the structural equations of motion (including nonlinearities) to look at

aeroelastic response. There are, then, resons to believe that a time domain, rather than a

frequency domain, solution method may be useful.

The approach that will be adopted in this report is to start from basics, the inviscid

equations of motion of a gas and relevant boundary conditions. Issues of linearization

will first be discussed. Then the elementary solutions for uniform mean flow will be

described, followed by a presentation of the general method of superposition of those

elementary solutions to form the desired solution for the flow about a given deforming

body.
This work is intended as an extension of the planar wing time domain analysis

performed earlier by M. Blair and the present authorZ 5 , to general body geometries. The

approach taken here is quite similar to that developed by Morino6'7 , but with some

differences in the integral formulation.
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Section (11)
Linearized Inviscid Equations

The governing equations of fluid mechanics can, for our purposes, be written in the
inviscid form (Euler equations):

Dp/Dt =-pV- ILI

DDt= -- Vp 11.2p
Ds/Dt = 0 11.3

where D/Dt is the material derivative, p the density, p the pressure, s(p,p) the entropy,

and it the flow velocity.
The relevant boundary condition on a solid surface is simply that the fluid shall not

penetrate the surface. If the body surface velocity at some point is its, the unit normal to

the surface at that point is n^, then the gas velocity at the surface must obey:

u= un 1.4

These equations define the nonlinear problem.
Now suppose there is a steady flow, denoted by subscript 0, which obeys the Euler

equations, and which is perturbed by a small disturbance flow, which we denote by
subscript 1. The perturbation flow is governed by the linearized Euler equations:

1 -
D0 [pl/po] =--V ' [p -u l ] 11.5

Po

D0 'It +'1c Vit0 -LVpl +-,-Vpo 11.6

D0s, + u1 "Vs0 = 0 11.7

where Do denotes the linearized material derivative, based on the unperturbed flow

velocity -U0.
These equations are, of course, linear. However they generally have variable

coefficients, which depend on the steady flow, and are not significantly easier to solve
than the original equations.

If the mean flow is uniform, then we can drop all terms involving gradients of the
mean flow. Suppose, in addition that we use a coordinate system which is fixed relative
to the undisturbed gas, so that the mean flow velocity is zero. Then we recover the
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classical linear acoustic equations:

Pit -- poV'OVt 1] I.8
Ul,t 1O Vpl 11.9

Po

s~t -1 0 IL 10

Note that the difference between classical acoustics and linear aerodynamics lies

not in the governing equations, but in the fact that in typical acoustic problems the

sources are stationary with respect to the gas, while in aerodynamics the sources move

with respect to the gas.

The surface boundary condition can be expressed simply as:

no.ul = IL11

where i0o is the unit normal top the undeformed body, since now iuil is a pure

perturbation. The normal velocity of the body must, of course, be small compared to the

speed of sound for the linear approximation to be meaningful. How small it has to be
depends on the flight Mach number, the closer the Mach number is to 1, the smaller the

normal velocity must be to avoid nonlinear steepening of waves. Note also that there will

generally be some points on the body where the local body velocity is along the normal.
These will usually be local points of failure of the linear theory.

Now it is apparent that in this approximation the entropy perturbation s, is fixed by
the initial conditions and never changes. Hence an entropy disturbance, if one exists, has

no effect on the velocity or pressure fields. The continuity and momentum equations can

be written purely in terms of pressure and velocity:

(pI/Po)t = -aO2 V't 1  1.12
Ul't = -VIIPo] 11.13

where ao is the undisturbed speed of sound.

We can further split the problem into a potential wave field and a stationary

rotational flow (gust). To do this, define a disturbance velocity potential , such that:

+ Pl/PO = 0 11.14

which is a linear Bernoulli equation, and define a "rotational velocity" U. by,

Ur = U1 11.15

We are free to select this splitting so that the rotational velocity is initially solenoidal:
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V'tO at t0 ML16

It follows immediately that the rotational part of the velocity is independent of

time:

-. 4ut=0 IH. 17

(and is, therefore, always solenoidal), and that the potential obeys the classical linear

acoustic wave equation:

[2o = V2 _ 0,t/a2o =O 11.18

Thus, the rotational flow is determined strictly by the initial conditions, like entropy.
Unlike entropy, the rotational velocity is important, though, because it interacts with the
wave field through the surface boundary condition:

no'Vo = f' -f'o' 11.19

The problem that must be solved, then, is the wave equation for the velocity

potential 0, subject to the Neumann boundary condition on the undeformed body. Once
this is done, the pressure can be determined from the linearized Bernoulli equation. Note

though, that since the body moves with velocity V, the time derivative in Bernoulli's

equation should be expressed at a fixed point on the body:

PI/Po = -(i4713sV) 11.20

where is the time derivative of surface potential at the point on the body which moves

with velocity i4. The convective derivative can be decomposed into normal and

tangential components, and the normal component is known from the surface boundary

condition. Hence, it is sufficient to know the potential on the surface of the body to

determine the pressure on the surface.
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Section (Ell)
Elementary Solutions of the Wave Equation

The wave equation has a simple spherically symmetric solution:

(,t) =--Q(,c)/( 4xtR) .

where R = x-x s is the radius vector pointing from some fixed point 3s to the field point,

R is its length and:

I = t-R/aO 111.2

is the time at which a sound wave must leave xs to arrive at I at time t, the so called
"retarded time." This solution represents the potential due to a point source, emitting

fluid from the source point Z at the rate Q(t) in volume per unit time.

This solution is valid only if the source point is stationary, that is if xs is

independent of time. If the source moves with respect to the gas far away from it, the

solution is modified by what are known as Doppler effects:

x, t) =--Q(,¢)/( 41c& )111.3

where Rc is stretched by the relative motion:

R -= R I-MrI 111.4

and M is the component of source Mach number directed at the receiving point:

M R.-Ms 1m.5

=sx/ao 111.6

Note that if the source Mach number component is 1, then Rc is zero and the potential

blows up. This corresponds to the field point being on the Mach cone emanating from the

source when the source moves supersonically through the gas.
It is important to recognize that the retarded time is still determined by the same

condition, but now the source position is that at the emission time :

t = T + 1 4 - --* ) X, 11.7

If the retarded time is given, the reception time is explicit. If the reception time t is

given, this relation is a nonlinear algebraic equation for T, which could have any number

of roots. If the source Mach number is always less than 1, then you can show that there is
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only one T for every t.
The source solution can easily be used to generate other solutions by addition. In

particular, since any derivative of a 3olution must be a solution, then we have that:

SV.[ - K('t)/(4cRe)] m.8

which is the potential of a dipole with strength and orientation fixed by K.
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Section

Source and Doublet Distributions

We first consider the representation of an arbitrary wave field by means of a

distribution of sources and dipoles over a given, but general surface. The only real
difficulty in doing this is that we must adopt some method of parameterizing the surface

over which the singularities are to be distributed. Since the retarded time depends on time

and position, using the spatial coordinates of the surface is not recommended. Instead let
Po denote the pair (4,q), which shall uniquely span the surface. We need not further
specify how these coordinates are to be defined, except that they shall not depend on

time. Also, let dAo(P 0) denote a generalized area element attached at the point P0. This

need not represent a physical area. In fact, we may simply take it as dA0 = d~dij. The

presumption is, of course, that the coordinates of the surface are specified in the form:

-*=o - (Po, t) IVA1

Having adopted such a parameterization, it is then apparent that the potential field:

I q(PO'r) dAo(Po) IV.2

+---1 V"f g(P0'r) dAo(P0) IV.3

is a solution of the wave equation, since it is simply the sum of sources q dAo, and

dipoles pdAO. The reason that the "area element" dAo is arbitrary is that any scale

change in it could be absorbed into a rescaling of the source and dipole densities q and g.
Note that at each integration point PO the retarded time must be found from the delay
equation:

= t- I Z'o (P, r) I /aO IV.4

The orientation of the dipole density AL is arbitrary. However, if it were tangential

to the surface, then the dipole integral could, through an integration by parts, be

converted into a source distribution and absorbed into q. It is sufficient, then, to take ig as

being normal to the surface. Let ii be the local unit normal, so that:

. (Po, ) = n^ (VO, )W(VoT) IV.5

where g is the magnitude of the dipole strength.
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Now the above € is a solution. What are its properties? Consider first the case of a

pure source distribution, p-=0. It can be shown that t&ie potential field is then continuous
but that the normal derivative is discontinuous across the surface. The jump in normal
derivative determines the source density:

q(Po,t) = A(fi'V )dA/dAo  IV.6

where dA is the local physical area elements, and A is the jump across the surface, with

positive side defined by the direction towards which fi points. Note that since the jump is
determined by local singularities, the retarded time does not come into play. The

problem is locally incompressible.

Now consider the case of a pure dipole distribution, q=0. It can be shown that the
normal derivatives are continuous, but that (since the dipole term is the derivative of a

source distribution) the value of potential jumps across the surface. The size of the jump

determines the dipole strength:

AOAdAo IV.7

It is evident, then, that the general form, containing both sources and dipoles, will
have jumps in both the value of 0 and in its normal derivative across the surface, and that

these jumps determine the source and dipole densities q and p. If the surface is closed
(and its exterior is of physical interest) then the densities q and g. have no direct physical
significance, since they are then differences between exterior and interior values. If,
however, the surface is open, and exposed to fluid on both sides, then the densities are

meaningful.
Any solution of the wave equation for the wave field produced by a body can be

represented by some distribution of sources and dipoles over its surface, as described
above. But while arbitrary choices of q and gL yield a solution, that solution will not

generally satisfy the flow impermeability condition on the surface. Our objective, then,
is to determine suitable distributions of q and g. for which the field 0 determined by them,
satisfies the Neumann boundary condition at every point on the body. There are generally

many ways to do this.

Note that an open surface has no interior, and the impermeability condition would

usually imply equal normal velocities on either side. In such a case, the source density q
would be identically zero, and g. would measure the jump in potential across the surface.

This is the model of a zero thickness wing.

For a closed surface, which has an interior, one must generally make a choice for
either q or g., or set some constraints on them, simply because there is one boundary

condition at each point on the surface, but two degrees of freedom (q and g.).

9



Finally, it may be noted that,the foregoing discussion has presumed that the

sources and dipoles are to be placed °ndie (undeformed) surface of the body. This is not

necessary. In fact, singularities can clearly be placed inside a closed body if desired, or

the entire physical surface could be replaced by some neighboring simplified simulacrum

of it (in fact this is what would always be done, the only question is to what degree the

model is faithful to the reality. Since linearization already has cost dearly in fidelity,

there is little reason to be too religious about geometric accuracy.)

10



Section (V)
Generalized Green's Identity

In the previous section we looked at representations in terms of general source and
doublet distributions. Usually the source and doublet densities involved have no direct
physical significance. In this section, a formal derivation of Green's identity for an
arbitrarily moving body will be presented. The result is a source/doublet representation
containing only the known normal velocities and the unknown potentials on the exterior
surface of the body.

We begin with an impulsive source:

G(-*,t; 0, to)=-8(t-to+R/ao) V.14ixR

where 8 is the Dirac delta function. This quantity G is the velocity potential of a "bang"

source emitted from 10 = x' at time t = to. It is a Green's function for the acoustic wave
equation, in that:

02G - V2G- 1 G,,t = 8C(i-Zo)8(t-to) V.2
a 0

Note that since the source is impulsive, the field is zero everywhere except on the surface
of the sound sphere radiating out from the point of origin. We may freely think of the
source point as moving around in space along any path. There are no Doppler effects
because the sound sphere is emitted at only one point on this trajectory. Any motion of
the point when it's not emitting can have no- influence on the disturbance generated.

For any which satisfies the wave equation, ]2. = 0, and any G that satisfies the
inhomogeneous wave equation 02G = 8, the following is a simple identity:

V'(OVG-GVO) = 08 + - [-[Gt-G.t].t V.3

Let V be the volume exterior to some closed surface S(t) on which there is an outward
normal i, and a surface velocity it3(t). Define the normal component of the surface
velocity as un = n-u, and the Mach number of this normal velocity as Mm = us/ao.

Obviously we must have M. <1 or the linear approximation would be ridiculous. We
will keep terms proportional to Mt, though, for completeness.

Integrate the above identity over the volume V, and apply Gauss's theorem to the
divergence and Leibnitz' rule to the time derivative term. We get the following identity:
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Wx-, t)(t-to) = [V.4

JdA[G -Mao(Gr-z)VA~

A = ( ,t-*,tyao2  V.5

un= .V ; = fi.VG V.6

Here un is the normal derivative of , which is, of course, known from the boundary

condition. u, is the normal component of surface velocity, which is also known, but not

the same as u, because the later includes the effects of deformation and gust, while the

former includes only the undeformed body motion.

We now substitute in the particular choice of G, and group terms proportional to

8(t-t0 +R/ao) and its derivative 8. The result can be expressed this.way:

dt
--4#(t ,t)8(t'-t0) = [8f0+Sfj ] + 4N d-t V.7

where:

o= + V.8
R R 0

f= -[-M ] V.9ao R

We are now in a position to integrate with respect to time t. The term involving A will
generally produce initial condition terms in the solution. These are of no interest, and we
shall take this contribution to vanish, so that we get a representation of at the arbitrary
point' , to as:

-4xtx(o. to) - fdtfjdA[8fO+8fi] V.10

The problem is that S depends on t, so we cannot simply interchange the order of

integration. Instead, use a marker parameterization of the surface PO = (4,i), as in the last

section, so that the instantaneous surface S(t) is defined by the collection of points

ZXs(Po,t). We can define g(P0 ,t) as the ratio of the area element dA to the generalized

area d~dT, so that:

dA = cddrj V.11

Doing this allows us to interchange order of integration. Now we must perform the time

integrals. To do this we require the following properties of the Dirac delta function:

12



8(t 8(t-) V.12
SI g(¢)lI

8(t0-0 V.13
(t) 10 )1

where g(t) is any regular function, and C is a root of g, so g(C) = 0. (If there are multiple

roots, they must be summed.) In this application, we have g(t) = t-to-R/ao, where R

depends on t through the motion of the surface coordinates.

Now perform the time integration to get:

-4x4(', to) = Jfd~dI [fo-(Oi+4)]/ j I V.14

K= j 
V.15

The integrand is evaluated at the retarded time c, the root of g(t). This formula is still

incomplete because it contains (in f0) the partial time derivative O.t. This can be replaced

with the total time derivative of 0 at the body fixed point PO by means of the chain rule

identity:

O.t = --unum-it'VO V.16

where we have decomposed the surface velocity "V. into its normal and tangential

components:

..u = Uist+nus V.17

The end result for the potential outside the body can now be written in the

following somewhat more compact form:

-4xorxo.to) = Jj[COun +CI+C 2  V.18

Where the four coefficients Cj depend only on the surface geometry and state of motion,

not on the properties of the wave field 0. These coefficients are given by:

13



".CO Re V.19

C1 = I("I2+V)/ v.20

C(3 =-MM- V.21
aoRc

C2 = -C3-)/I g I V.22

; -n=Mm) V.23ao~g

g=-usN/ao = 1-M V.24
1 . . -

R xo-x(Po,c) V.25

R-R Jll V.26

N=R/R V.27

The above formula is perfectly general (aside from having ignored initial

disturbances within the flow,) and makes no assumptions about the shape or state of

motion of the surface S(t) over which the integration is performed. It is one possible

choice of definition of the general source/doublet distribution formulas, which has the
advantage that it contains only physically important quantities, the normal velocity at the

surface u. and the surface potential itself, #. It appears more complicated than the earlier

representation only because the derivatives have been carried through. Some small

simplifications are possible in the special case of rectilinear unaccelerated motion of the

surface S, but they are insignificant. For rectilinear motion, the retarded time calculation

can be performed analytically. For other types of motion, it would have to be done

numerically, though the additional cost would likely be small compared to the total cost

of solving the problem.

Note that this identity applies everywhere in the exterior space surrounding the

body, and gives us the potential there directly if the normal velocity and surface potential

were both known. However, only the normal velocity is known a priori. To find the

surface potential, we need only bring the field point -0 down onto the surface S(to), at

some point 40,T10, say. We then have an equation mapping the surface onto itself:

L' = b V.28

where b represents that part of the integral which is known at time to, and L is a linear

Fredholm operator of the second kind. In fact, because of the finite time delay between

points, L is very nearly a simple scalar multiplier.

14



Sec(V.1) Retarded Time

The retarded time x is the solution of the delay equation t=-+R/ao. This is equivalent to

finding the positive roots of the equation:

F(R) = R2 - [-i:-(t-R/ao) 12 =0 V.29

Now for rectilinear motion this is just a quadratic. Other motions would be at least

locally rectilinear. A general quadratic iteration is, thus, suggested, based on the Taylor

series expansion about some point R:

F = F(R) + 8R FR + .5[8R]2 FAR V.30

F.R = 2[R(- R'M] V.31

F.R=2 - ,2 + R'M/ao] V.32

Solving the quadratic for the change 8R gives the following solution for R:

R= [-B ± 1]/ A V.33

A=1 2 +R-Ms / ao V.34

B=R( -A) -RM, V.35

D (B + AR )2 + A( 412 - R2) V.36

The two roots for R are there simply because the equation is quadratic. If the flow

is subsonic there can be but one positive root, and the other is simply discarded. At

supersonic speeds, there may be two or no (real positive) roots, depending on whether the

field point is inside the domain of influence of the source point or not. If there are

multiple roots, and therefore multiple retarded times, the contribution of each to the

integral is added in.
In rectilinear motion this gives the exact solution regardless of the initial guess for

R. In nonrectilinear motion it would give the correct result if iterated starting from a

nearly correct result. Since any real calculation would involve a continuous distribution

of retarded time over the surface, one would always have a good initial guess in hand

from the last point processed.
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Section (VI)
Uniform Translation

In the important special case where the body translates with constant velocity,

certain simplifications are possible. This special case will be examined herein, first for

steady flow, then for unsteady flow.

Sec (VI 1) Steady Flow

Although this is a standard problem it will be described to establish the method and
notation. If the Mach number is M, directed along the x axis, then the disturbance

potential obeys the classical formula:.

(l-M2),x,.x4 .y,y+4,z.z = 0 VI.1

If we define -= 'I-M2), and do a transformation of variables:

--x,yr=3y,i= z VI.2

then, as is well known, the equation reduces to Laplaces equation:

V2O =-0 VI.3

The Green's function is, of course, -1/4xkP, where R is the radius in barred coordinates.
This familiar devise is the steady state Lorentz transformation, which we will make use

of again in the next section.
A direct application of Green's theorem to Laplace's equation in barred

coordinates, followed by a transformation back to physical coordinates in the integrals,
yields the following identity:

# [-+0 ]Rn dA VI4
Rc RC3

which will be recognizable as a distribution of sources and dipoles over the surface.
However the source density is:

q = niV4-M2 ,xnx VI.5

which is not known from the flow tangency condition on the solid surface, because it

contains the streamwise velocity perturbation 0., which is part of the unknown. A
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smilar term involving tangential velocity appeared in the general unsteady Green's

theorem formulation.

There are a variety of ways to fix this. Here we use integration by parts to

eliminate the tangential velocity. First we can decompose the velocity , into normal

and tangential parts, with the result:

ql= 2un-M 2 n, y'V€ VI.6

where T is the unit tangent vector in the flow plane, and:

FVI.7
=MnX VI.8

y-r VI.10

The part of q which contains tangential derivatives can be integrated by parts over

the surface. We suppose that the surface is closed, so that:

ffV.(M 2 nx O/Rc)dA = 0 VI.1

If this is true, then we obtain the representation:

--4XWO) = f[p2 j+ OK IdA VI.12

where K is a somewhat messy function of position and Mach number given by:

K = K/Rc3+K/Rc VI.13

KI - (M 2-3M2)/Rs VI.14
K0 = p2(l+Mn2)R'4 VI.15

The variable R, is the radius of curvature of the surface in the flow plane. It appears in
the result because of the differential geometry identity:

V'(nxyr) = (1-3nx2 )/R3  VI. 16

This formula contains no tangential derivatives of the unknown, only a distribution of

known sources, and a weighted integral of the unknown 0. It naturally contains many

terms which, if they were not negligible, would invalidate the assumptions of the linear

theory on which the formula is based. (For example, you must have Mn << 1.) This is

because the result was derived for an arbitrary body shape, while not every body shape is

really suitable for a small disturbance approximation.
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Sec (VL2) Unsteady Ftow

Much of the complexity of the general unsteady formulation arises from the fact

that the body is moving relative to the gas. For a stationary radiating body (acoustics),

the formulation is quite simple, and gives the classical result:

-4r( ,t) = ff[  Z ]dA+Vof[j4( c)]dA VI.17

where un is the normal velocity at the surface (known), and r = t-R/ao is the retarded

time.
In the special case of rectilinear motion of the surface, we can transform to Lorentz

coordinates, which make the wave equation identical in form to the stationary case:

[VIa 0 VI.19

while leaving the body surface stationary (the over bars denote Lorentz variables). Now,

since the bounding surface is independent of time, the formal solution is easily obtained

just by replacing all variables in the stationary body integral formula with Lorentz
coordinates.

The result is, however, awkward to deal with because the surface coordinates are

deformed. Therefore, the integrals are transformed back to physical space. After some

tedious manipulation, we get an integral identity with striking resemblance to the steady

state formula:

=4#(i*o)= u + 0 K + K2]dA VI.20

which is just as in steady flow (K is the same), except that the integrand is evaluated at

the retarded time, and there is a new term directly proportional to the local time

derivative of 0, with a coefficient:

K2=2 n ¢ R-Rc] VI.21

Note that if the Mach number is set to zero, the formula reduces to the stationary

radiating body case.

This formula for 0 may be taken as the basic result of this investigation. It give the

integral representation of 0 directly in terms of surface values of 0 itself (with no

tangential derivatives) and of a known source distribution. It is little harder to implement
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than a steady flow solver based on the same kind of approach. In fact the resemblance is

close enough that the best way to implement it might be to take an existing steady panel

code and modify it to account for the retarded time and the extra time derivative term in

the equation.

Sec (VL3) Discretization

The integral representation for can obviously be discretized and put into the canonical

form, (on the surface itself):

M*1 = Co[unlr + C1 [Wr VI.22

where the brackets []denote vectors spanning the surface and the coefficients Ck are

square matrices with dimension equal to the number of elements of the. surface

representation. The values of these coefficients depends on the particular quadrature rules

adopted. The important thing, though, is that for the case of rectilinear motion, these

coefficient matrices are independent of time. In particular, Co and C1 are the same
matrices that would appear in a steady flow solver. (The coefficient matrix C2 would, of

course, not appear in a steady solver because it multiplies a term which vanishes in that

case.) They, in principle, can be computed once and stored. The only drawback to doing

this is that for a large problem, these storage requirements might be prohibitive. If there

are 5000 elements on the surface, storage of all three coefficients would amount to

7.5 07 matrix elements. For reasons which will be discussed below, only a small part of

these matrices would have to be stored to do a direct solution for [ ] by time marching.

In steady flow, the C2 term and the subscripts "r" can be dropped, leading to a

linear algebra problem with the form:

AIC[] = CO[u.] VI.23
AIC = I-C, VI.24

If there are N surface elements, then AIC is a full N by N matrix. This is the standard

steady flow problem.
In an unsteady flow, the vector [0] indicates the current time vector of 4's on the

surface. The vector [f] (and similarly for the other two vectors on the right hand side of

the equation) indicates the retarded time realization of 0 at each surface element. The

farther away the sending element is from the receiving element, the farther back in time

the signal will come from. Only the nearest elements would depend on the current time

(unknown) solution, so that the size of the linear algebra problem to be solved is in fact
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far smaller than the number of elements on the surface, unless the time step is so large

that a sound wave will span a large fraction of the surface in one step.

To make this concrete, suppose that the solution for is stored in an extended

vector [f] which spans the surface and as much of the time history as necessary to

include all possible point to point interactions. (So this extended vector contains copies

of [0] at equal time intervals.) Then by the retarded vectors we must mean:

[un], = T[un]0  VI.25

[]r = T[]. N ;.26

[*r = T, [4]e VI.27

where T is an interpolation operator, and T, is a difference operator (i.e., matrix

representations of such operators.) For example we could use T, = T(1-E)/At, where E
is a unit back shift and At is the time step.

If there are N total surface elements, and a fixed Nt elements within the discrete
domain of dependence of any given element, then the problem can be reorganized into a
simple linear algebra problem:

AIC [0] = [b] VI.28

where AIC is an N by N matrix, with at most N, nonzero entries on each row, and [b] is

an N vector containing all of the known data. The AIC matrix is sparse, but its sparsity
pattern is unknown and would vary depending on how the surface elements were
numbered and on how big the time step is (and so on how big the domain of dependence
of any element is). The system could be solved by a one-time LU decomposition of AIC,
followed by a back solve at each time step.
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Sec (VL4) An Exact Solution

One difficulty with any numerical procedure is to decide whether the calculated

results are correct or not. For the disturbance produced by a general three-dimensional

time-dependent deforming body, this is a particular problem, since exact solutions for
typical prescribed body motions are not available. This difficulty, however, can easily be

circumvented.
In the Green's function based method, the surface source density, which is simply

the normal velocity 4/n, is set, and the resulting surface potential is to be determined

through a numerical solution of the integral equation. However, consider a surface with
finite volume but otherwise arbitrary shape. Somewhere in the volume enclosed by this

surface place a moving point source of strength a(t). The velocity potential induced by

this source is:

O(i,t) = -() / 4R VI.29

From this elementary potential we can compute the velocity induced normal to the

enclosing surface:

U-- 1 [ nR ( /ao + a(1-MJ)/Rc)-ao0Mo] VI.30

where i^0 is the unit outward normal to the bounding surface, M0 is the source Mach

number, and all quantities are evaluated at the retarded time.
If we set the normal velocity on the surface according to this formula, then the

exact solution for the surface potential is known: it is just the simple source potential.

The advantage of this ruse is that it is applicable to bodies with completely arbitrary

shape, moving along an arbitrary path. Obviously other test cases can be built similarly

by placing more sources or other prescribed singularities within the body, and computing

the resulting surface normal veloc~iy. The simple source, however, would seem to be

entirely sufficient for checking any numerical method.

We note, for future reference that for the special case of a spherical surface, with

the source placed at the center of the sphere, the surface normal velocity simplifies

slightly to:

un=[ no'R a / ao VI.31
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Sec (VI.5) An Example Problem

To test out the formulation on a simple example, we considered the following
special case. Take a sphere. Inside the sphere, at the center, place a simple point source.
The source, and the sphere surrounding it, translate along the x axis at some fixed
subsonic Mach number. The normal velocity on the surface of the sphere is set, as
indicated in the previous section, to the value:

S= [ no-R o / ao VI.32

so that the exact solution for the potential should be:

O(Ct) = --a(z) / 4,iRc VI.33

for any arbitrary choice of source strength a(t).

The problem is organized in the following way. The sphere is broken into N

disjoint panels. The distance between the centers of panels i and j, RLj, defines a signal

time delay:

Rij = a0 At (nLj+ei.j) VI.34

where At is the time step, hid is the whole number of time steps, and e.j is the fractional

part.
The surface potential is discretized as:

-47COi= yj [Co, ijqjr]  VI.35

where the superscript 'r" quantities are defined by simple linear interpolation;

qjr = -ej qJ , l  VI.36
€jr ¢?€-ej(¢ l-0 + ' ) VI.37

= +( 'f+1)/At VI.38

The superscripts nij are time counters, indicating where in the global history array, the
data are to be found for panels i and j.

At the start of each time step, the arrays O are advanced, and the current time

values ' are set to zero. The potential is then summed and the result of the summation is

stored in a vector bi.

The influence coefficient matrix is loaded based on the following:
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MCj=4x VI.39
if nij = 1, then

AICji = AIC j + C1,1jei1 + C2,j/At VI.4o

No attempt was made to use the sparseness of AIC because the problems were all of

small size.

The influence coefficients were evaluated in the crudest possible way by a simple

midpoint rule, except on the diagonals, where a three-point average was taken. This

method is unsatisfactory and was used only to test out the algorithm.

In the first example, the Mach number is 0.5 and the source strength is o(t)=l-et,
in units where the speed of sound and radius of the sphere are both 1. The sphere was

divided into 400 panels by 20 equal longitudinal and 20 latitudinal cuts. The time step

was chosen as 0.2. The result for the time history of the potential at a point 450 over the

leeward side of the sphere is shown in Figure 1, along with the exact solution. The

qualitative features of the solution are reproduced, but the numerical results are rather

jagged. This is not a special property of this point, as shown in Figure 2, which shows the

longitudinal surface distribution at a sequence of times. It is believed that the noise in

this calculation is caused primarily by the poor choice of near field influence coefficients,

not by the low order temporal interpolations used. The fact that the general timing of the

disturbances is correct indicates that the implementation was made correctly. All that

remains to be done is to replace the steady-state influence coefficients by more accurate

values.

This is shown somewhat more clearly in the second example, which is identical to

the first except for a smoother source distribution, a(t) = (1-e-) 2 . The distribution of

surface normal velocity for this example is shown in Figure 3. It is quite smooth, and

approaches a steady state at long times. The corresponding exact solution for surface

potential is shown in Figure 4, and the numerically computed solution in Figure 5. Notice

that the numerical solution starts out correctly, but eventually reaches an incorrect steady

state. This is a clear indication of the inadequacy of the steady influence coefficients

(which are what determine the steady solution.)

The numerical part of this work was not carried further for nontechnical reasons.

Much remains to be done, principally with regard to the implementation of accurate

steady-state influence coefficients.
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Section (VII)

A Timing Study

An effort was made to examine the cost of this type of calculation. Admittedly,
such costs are very machine dependent, but the results are suggestive. The major part of
the calculation is simply the accumulation of the sums representing the surface integrals.
Without time delays this amounts to simple vector multiplies and code vectorization
gives a factor of 10 speed up. When the time delays are included, the basic operation is a
summation of the type A(ij)X(k(ij)), which does not vectorize unless the vector X is
gathered and scattered before and after the operations are performed. This was done, with
an interesting result. The calculation became a trivial part of the calculation. The
gathering and scattering operations themselves consumed the greatest part of the cpu
time (by about a factor of 8). This means that only a factor of 2 savings could be obtained
by vectorization, overall, since the gather/scatter time could not be reduced.

We can give a breakdown of the costs of a typical time step for each of six distinct
phases of the vectorized code. The units are percent of the total cpu time for the step:

1) evaluation of source strengths .... 1%

2) source terms ............... gather 42%

............... compute 7%

3) 0 terms ............... gather 38%
............... compute 10%

4) inversion ............... <1%

5) shift stacks ........... 1%

It is apparent that 80% of the overall cost involves no calculations.
It was estimated that in vector mode, the test code that was run took about 1.5

10- 5N2 seconds of CPU time per time step (on a Gould NP1 machine.) Note that the cost
is inherently quadratic in the number of panels and, therefore, would become prohibitive

rather quickly. With this run time estimate, a 5000-panel model, run through 1000 time
steps would take 100 hours. This is not reasonable given the physical limitations of the
underlying theory. The Gould is about 1% Cray2 speed, depending on the problem, so
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this might translate into 1 hour on a Cray. It is quite likely, though not certain, that a

direct finite difference solution to the same problem, with the same resolution, might be

faster on such a machine. If this is true, then methods such as that discussed here ought

to be useful only when N is small, that is for low resolution simulations. Since the

resolution of the underlying theory is limited anyway, this may be appropriate.
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Section (VII)
Conclusions

The present study provides a general formulation of the time dependent linearized

aerodynamic problem for bodies moving along arbitrary paths, and in particular, for

bodies moving rectilinearly at constant velocity (apart from small amplitude elastic

deformations of the surface.) For the case of rectilinear motion, the formulation differs

somewhat from previous work in that a "direct" Green's identity is given which contains

only the surface potential and surface normal velocity. All tangential dipole terms were

removed by an integration by parts.

A significant result of the study is a simple exact solution that can be used to check

any general purpose time dependent code, at least for bodies with finite volume. This

simple idea could be useful in the testing of other codes, though it does not, of course,

provide results for problems of physical interest.

Implementation of the proposed formulation in a working code, for the most part,

remains to be done. One example calculation was performed, using rather poor near field

influence coefficients, to test out the basic ideas. The results of that calculation indicated

the clear need for a better near field representation, if accurate solutions are to be

obtained, but gave no suggestion that there would be any difficulty doing so. The

example did allow a realistic assessment of the probable computational requirements of a

full simulation. The costs would be quite high on a large problem (several thousand

panels), though of course no method is likely to be able to handle a complete aircraft

easily and cheaply.
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Figure 1

Computed Potential at 45 deg leeward, M = .5, a I 1 6'
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Figure 2

Distribution of potential with longitude, case of Figure 1
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Figure 3

Distribution of Normal velocity, M =.5, a =(1 -,
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Figure 4

Exact distribution of surface potential, case of Figure 3
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Figure 5

Numerical distribution of surface potential, case of Figures 3, 4
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